Co3O4–SiO2Nanocomposite: A Very Active Catalyst for CO Oxidation with Unusual Catalytic Behavior
نویسندگان
چکیده
منابع مشابه
Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids
Characteristics of nanosized Pt electro-catalyst deposited on carbon nanotubes (CNTs) were studied with CO-stripping voltammogram and chronoamperometry measurements. The CNTs were pretreated by oxidation in HNO3, mixed HNO3 + H2SO4 and H2SO4 + K2Cr2O7 solution, respectively, to enable surface modification. Well-homogenized Pt particles (average size: 3 nm) were loaded onto the pretreated CNT sa...
متن کاملGenesis of a highly active cerium oxide-supported gold catalyst for CO oxidation.
X-Ray absorption spectra show that a CeO(2)-supported CO oxidation catalyst prepared from Au(III)(CH(3))(2)(C(5)H(7)O(2)) initially incorporated Au(III) complexes that were catalytically active at 353 K; during operation in a flow reactor, the gold aggregated into clusters and the catalytic activity increased.
متن کاملCalculations of CO Oxidation over a Au/TiO2 Catalyst: A Study of Active Sites, Catalyst Deactivation, and Moisture Effects
The reaction mechanism of CO oxidation on Au/TiO2 catalysts remains elusive. Here, we employ density functional theory calculations to gain an understanding of several important aspects of the system, including CO adsorption, the active oxygen species, catalyst deactivation, and the promoting effect of moisture on catalytic activity. Distinct from previous theoretical studies, which tend to add...
متن کاملOrdered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation.
Cubic ordered mesoporous Co3O4, prepared via the nanocasting pathway using KIT-6 as hard template, was found to be an excellent catalyst for low temperature CO oxidation, with the activity clearly depending on surface area and pore systems of the catalysts.
متن کاملActive oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity.
Since their introduction by Haruta, oxide supported Au catalysts with Au nanoparticles (NPs) of few nanometers in diameter have attracted enormous interest because of their high activity for various oxidation and reduction reactions most prominently the CO oxidation reaction. Mechanistic details and hence the physical origin of their high activity, however, are still controversial. Focusing on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2011
ISSN: 0002-7863,1520-5126
DOI: 10.1021/ja2028926